
M.C.A-II(Semester-III)Lab Course 305

University of Pune

MCA - II

(Under Science Faculty)

Lab Course – 305

Lab Manual

Name: ___

Roll No. _____________Academic Year: 20_____ - 20_____

College Name: ______________________________________

M.C.A-II(Semester-III)Lab Course 305

University of Pune

MCA - II

(Under Science Faculty)

Lab Course – 305

Lab Manual

Name: ___

Roll No. _____________Academic Year: 20_____ - 20_____

College Name: ______________________________________

M.C.A-II(Semester-III)Lab Course 305

University of Pune

MCA - II

(Under Science Faculty)

Lab Course – 305

Lab Manual

Name: ___

Roll No. _____________Academic Year: 20_____ - 20_____

College Name: ______________________________________

M.C.A-II(Semester-III)Lab Course 305

Preface:

In pursuance of the decision to implement credit system at the post graduate level and
ensure continuous assessment, the UOP has decided to implement the credit & semester
system (CSS) in all its affiliated college and recognized institutions where post graduate
courses are conducted.
Assessment shall consist of continuous assessment (CA and END of Semester
Examination (ESE)). Each shall have an equal weight age of 50%.

Assessment and grade point average

The system of evaluation is as follows: Each CA and ESE will be evaluated in terms of
marks. The marks for CA and ESE will be added together and then converted into a grade and
later a grade point average.
Results will be declared for each semester.
After the gain of minimum number of credits after completion of a PG program, a student will
get a grade sheet with total grades earned and a grade point average.
Marks /Grade/Grade point

Final Grade Points

Grade Points Final Grade
5.00 – 6.00 O

4.50 – 4.99 A

3.50 – 4.49 B

2.50 – 3.49 C

1.50 – 2.49 D

0.50 – 1.49 E

0.00 – 0.49 F

Marks Grade Grade
Point

100 to 75 O : Outstanding 06

74 to 65 A : Very good 05

64 to 55 B : Good 04

54 to 50 C : Average 03

49 to 45 D : Satisfactory 02

44 to 40 E : Pass 01

39 to 0 F : Fail 00

M.C.A-II(Semester-III)Lab Course 305

Practical Evaluation Format

The internal continuous assessment will be 50M and end semester lab examination will be of
50M.
The outline of distribution of Practical Marks for various aspects /mechanisms towards
Continuous Assessment is as follows:

Sr. No. Distribution Marks Marks

1. Journal
 After finishing everypractical instructor should
give the marks to respective assignment and evaluate
those marks at the end of the Semester out of 15 (OS
and Core Java) 30

2. Internal Practical Evaluation
Respective subject teachers should evaluate
Operating System and Core Java assignments for
10M each by conducting mock tests.
Oral

10

10

Total 50M

The outline of distribution of Practical Marks for towards End Semester lab
examination is as follows:

Sr. No. Distribution Marks Marks

1 Core Java Programs
20

2 Operating System program 20

3 Lab book 5

4 Viva 5

50M

M.C.A-II(Semester-III)Lab Course 305

Introduction

1. About the work book
This workbook is intended to be used by MCA-II (Computer Science) students for the
laboratory course CA 305. In MCA, hands-on laboratory experience is critical to the
understanding of theoretical concepts studied in the theory courses. This workbook
provides numerous computing problems covering all difficulty levels.
The objectives of this book are
 Defining clearly the scope of the course
 Bringing uniformity in the way the course is conducted across different colleges
 Continuous assessment of the course
 Bring in variation and variety in the experiments carried out by different students in

a batch
 Catering to the need of slow paced as well as fast paced learners

2. How to use this workbook
This workbook is mandatory for the completion of the laboratory course. It is a
measure of the performance of the student in the laboratory for the entire duration of
the course.

2.1. Instructions to the students
 Students are expected to carry this book every time they come to the lab for

practicals
 Student should maintain separate journal for the source code
 Student should read the topics mentioned in Reading section of this book before

coming for practical

 Students should solve only those exercises which are selected by instructor as a
part of journal activity. However, students are free to solve additional exercises to
do more practice for their practical examination

Exercise Difficult Level Rule
Set A Easy All programs are compulsory
Set B Medium At least 1 program is compulsory
Set C Hard Not compulsory

 Student will be assessed for each exercise on a scale of 5

Not Done 0
Incomplete 1
Late Complete 2
Needs Improvement 3
Complete 4
Well
Done 5

M.C.A-II(Semester-III)Lab Course 305

2.2. Instruction to the Instructors
 Explain the assignment and related concepts in around ten minutes using white

board if required or by demonstrating the software
 After a student completes a specific set, the instructor has to verify the outputs

and sign in the provided space after the activity
 Ensure that the students use good programming practices
 You should evaluate each assignment carried out by a student on a scale of 5 as

specified above by ticking appropriate box
 The value should also be entered on assignment completion page

2.3. Instructions to the Lab administrator
You have to ensure appropriate hardware and software is made available to each
student.
The operating system and software requirements on server side and also client side are
as given below

1) Server Side (Operating System)
a. * Fedora Core Linux /Red Hat Linux
b. * Microsoft Windows Server 2003
c. Apache Tomcat Server
d. Servers Side (software’s to be installed)

In Linux – C, jdk1.5,onwards,postgresql/Mysql
In WinXP -- MSOffice

2) Client Side (Operating System)
a. * Red Hat Linux and Fedora Core
b. * Microsoft Windows XP
c. Client Side (software’s to be installed)

In Linux – C, jdk1.5,onwards,postgresql/Mysql
In WinXP -- MSOffice

Compiled From : T.Y.B.Sc (computer science Lab book)

Prepared and Compiled by :
Ms. Manisha Bharambe, MES Abasaheb Garware College, Pune
Ms. Kiran Tiwari, MES Abasaheb Garware College, Pune
Ms. Saee Joshi, MES Abasaheb Garware College, Pune
Ms. Mahek Shaikh, MES Abasaheb Garware College, Pune

Reviewed by:
Ms. Chitra Nagarkar, MES Abasaheb Garware College, Pune

Ms. Manisha Bharambe, MES Abasaheb Garware College, Pune

M.C.A-II(Semester-III)Lab Course 305

SECTION I - Assignment Evaluation(O.S)

Sr. No
Assignment
Name

Teachers
Sign

Assignment
Marks

Viva
Marks

1 CPU Scheduling

2 Deadlock

3 Paging

4 File allocation

5 Disk Scheduling

SECTION II- Assignment Evaluation(Core Java)

Sr. No Assignment Name Teachers
Sign

Assignment
Marks

Viva
Marks

1 Java Tools

2 Array of Objects, Packages

3 Constructor Inheritance
and Interfaces

4 Exception Handling and Assertions

5 I/O and File Handling

6 GUI using Swing

7 Event Handling

8 Applets

9 Threading

Name Of Batch Incharge:

Signature Of Batch Incharge: Head of Department

Date:

M.C.A-II(Semester-III)Lab Course 305

SECTION I
OPERATING SYSTEM

M.C.A-II(Semester-III)Lab Course 305

SESSION 1

CPU Scheduling

Ready reference
• Selects from among the processes in memory that are ready to execute, and allocates

the CPU to one of them.

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.
Scheduling under 1 and 4 is non preemptive.
All other scheduling is preemptive

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – Number of processes that complete their execution per time unit.

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted until

the first response is produced, not output (for time-sharing environment)

Optimization Criteria

 Max throughput
 Max CPU Utilization
 Min turnaround time
 Min waiting time
 Min response time

There are 5 CPU Scheduling Algorithms:

1. FCFS

 Since context switches only occur upon process termination, and no reorganization of

the process queue is required, scheduling overhead is minimal.

 Throughput can be low, since long processes can hog the CPU.

M.C.A-II(Semester-III)Lab Course 305

 Turnaround time, waiting time and response time can be low for the same reasons

above.

 No prioritization occurs, thus this system has trouble meeting process deadlines.

 The lack of prioritization does permit every process to eventually complete, hence no

starvation.

2. SJF

With this strategy the scheduler arranges processes with the least estimated processing

time remaining to be next in the queue. This requires advanced knowledge or

estimations about the time required for a process to complete.

 If a shorter process arrives during another process' execution, the currently running

process may be interrupted, dividing that process into two separate computing blocks.

This creates excess overhead through additional context switching. The scheduler must

also place each incoming process into a specific place in the queue, creating additional

overhead.

 This algorithm is designed for maximum throughput in most scenarios.

 Waiting time and response time increase as the process' computational requirements

increase. Since turnaround time is based on waiting time plus processing time, longer

processes are significantly affected by this. Overall waiting time is smaller than FIFO,

however since no process has to wait for the termination of the longest process.

 No particular attention is given to deadlines; the programmer can only attempt to make

processes with deadlines as short as possible.

 Starvation is possible, especially in a busy system with many small processes being run.

3. Priority

 The O/S assigns a fixed priority rank to every process, and the scheduler arranges the

processes in the ready queue in order of their priority. Lower priority processes get

interrupted by incoming higher priority processes.

 Overhead is not minimal, nor is it significant.

 Waiting time and response time depend on the priority of the process. Higher priority

M.C.A-II(Semester-III)Lab Course 305

processes have smaller waiting and response times.

 Deadlines can be met by giving processes with deadlines a higher priority.
 Starvation of lower priority processes is possible with large amounts of high priority

processes queuing for CPU time.

4. Round Robin

The scheduler assigns a fixed time unit per process, and cycles through them.

 RR scheduling involves extensive overhead, especially with a small time unit.

 Balanced throughput between FCFS and SJF, shorter jobs are completed faster than in

FCFS and longer processes are completed faster than in SJF.

 Fastest average response time, waiting time is dependent on number of processes, and

not average process length.

 Because of high waiting times, deadlines are rarely met in a pure RR system.

 Starvation can never occur, since no priority is given. Order of time unit allocation is

based upon process arrival time, similar to FCFS.

5. Round Robin with Multilevel Feedback Queues

This is used for situations in which processes are easily classified into different groups.
For example, a common division is made between foreground (interactive) processes
and background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs.

SET A

1. Write the simulation program using FCFS. The arrival time and first CPU bursts of different

jobs should be input to the system. Assume the fixed I/O waiting time. The output should

give the Gantt chart, Turnaround Time and Waiting time for each process and average times.

2. Write the simulation program using SJF (non-preemptive). The arrival time and first CPU

bursts of different jobs should be input to the system. The Assume the fixed I/O waiting time.

The output should give the Gantt chart, Turnaround Time and Waiting time for each process

and average times.

SET B

1. Write the simulation program for preemptive scheduling algorithm using SJF/Priority. The

M.C.A-II(Semester-III)Lab Course 305

arrival time and first CPU bursts of different jobs should be input to the system. Assume the

fixed I/O waiting time (2 units). The next CPU burst should be generated using random function.

The output should give the Gantt chart, Turnaround Time and Waiting time for each process and

average times.

2. Write the simulation program for preemptive scheduling algorithm using Round Robin with

time quantum of 2 units. The arrival time and first CPU bursts of different jobs should be input to

the system. Assume the fixed I/O waiting time (2 units). The next CPU burst should be generated

using random function.

The output should give the Gantt chart, Turnaround Time and Waiting time for each process and

average times.

SET C

Write the simulation program using Round Robin with multilevel feedback queues. The arrival

time and first CPU bursts of different jobs should be input to the system. Assume the fixed I/O

waiting time (2 units). The next CPU burst should be generated using random function. The

output should give the Gantt chart, Turnaround Time and Waiting time for each process and

average times.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 2
Deadlock- Banker's Algorithm
Ready Reference
Definition:

Deadlock is a situation where each process in a set of processes wait for the resources
held by another process. Thus, a set of processes is in a deadlock state when every
process in the set is waiting for an event that can be caused by another process in the
set.

Necessary conditions to occur a deadlock:
A deadlock situation can arise if the following four conditions hold simultaneously in the system:

 Mutual Exclusion: At least one resource must be held in a non sharable mode. Only one
process at a time can use the resource.

 Hold and Wait: A resource must be holding at least one resource and waiting to acquire
additional resources that are currently being held by other processes.

 No Preemption: Resources cannot be preempted; that is, a resource cannot be released
only voluntarily by the process holding it, after that process has completed its task.

 Circular Wait: A set {P0,P1,...Pn} of waiting processes must exist such that P0 is
waiting for a resource that is held by P1,P1 is waiting for a resource that is held by
P2,...,Pn-1 is waiting for a resource that is held by Pn and Pn is waiting for a resource that
is held by P0.

There are three ways to handle a deadlock:
 Deadlock Prevention: It is a method to ensure that at least one of the necessary

conditions cannot hold.
 Deadlock Avoidance: This method requires that the operating system be given in

advance additional information concerning which resources a process will request and
use during its lifetime. With this additional information, we can decide for each request
whether or not a process should wait. To decide whether the current request can be
satisfied or must be delayed, the system must consider the resources currently to each
process, and the future requests and releases of each process.

 Deadlock Detection and Recovery: If a system does not employ deadlock prevention or
deadlock avoidance algorithm, then a deadlock situation may occur. In this situation, the
system can provide an algorithm that examines the state of the system to determine
whether a deadlock has occurred and an algorithm to recover from the deadlock.

Explanation of avoidance algorithm, safe state, safe sequence.
Deadlock Avoidance:
If detail information about the processes and resources is available then it is possible to avoid
deadlock, e.g. which process will require which resources, possibly in what sequence, etc. This
information may help to decide the sequence in which the processes can be executed to avoid
deadlock. Each request can be analyzed on the basis of number of resources currently available,
currently allocated and future requests which may come from other processes. From this
information system can decide whether a process should wait or not.

M.C.A-II(Semester-III)Lab Course 305

The Deadlock avoidance algorithm dynamically examines the resource-allocation state to ensure
that a circular wait can never exist. The resource- allocation state is defined by the number of
available and allocated resources and the maximum demands of the processes.
If a safe sequence in which processes can be executed is available, then only we can call the
system to be in safe state. A safe sequence is the sequence of process such that, if processes are
executed in safe sequence then each process in the sequence will be executed serially, with
current available resources. Then release, all the resources held by it making available for next
process in the sequence so on. A system without safe sequence is unsafe. Unsafe system may or
may not have a deadlock.

Banker's Algorithm is one of the Deadlock avoidance algorithms.
For these we require following data structures:
Allocation: An n*m matrix defines the number of resources of each type currently allocated to
each process. If Allocation[i][j]=k,then process Pi is currently allocated k instances of resource
type Rj.
Max: An n*m matrix defines the maximum demand of each process. If Max[i][j]=k, then
process Pi may request at most k instances of resource type Rj.
Available: a vector of length m indicates the number of available resources of each type. If
Available[j]=k, then there are k instances of resource type Rj available.
Need: An n*m matrix indicates the remaining resource need of each process.
If Need[i][j]=k, then process Pi may need k more instances of resource type Rj to complete its
task. Note that: Need[i][j]=Max[i][j]-Allocation[i][j].

Safety Algorithm:-
This is the algorithm used for finding out whether or not a system is in a safe state or not.
The algorithm is as follows:
Let n be the number of processes in the system. Let m be the number of resources

1) Let Work and Finish be the vectors of length m and n respectively. Initialize
Work = Available and Finish[i] =false for i= 1, 2, 3,..., n.

2) Find an i such that
a) Finish[i]=false
b) Need i <= Work
If no such i exists, go to step 4.
III. Work = Work + Allocation i Finish[i]=true
Go to step 2.
JJJ. If Finish[i] =true for all i, then the system is in a safe state.

When a request of resources is made by a process the following algorithm is used.
Resource-Request Algorithm:-
Let request i be the vector for process Pi. If request i[j]=k,then process Pi wants k instances of
resource type Rj.
When a request of resources is made by a process the following actions are taken:
1. If request i <= Need i, go to step 2. Otherwise, raise an error condition, since the process has
exceeded its maximum claim.

M.C.A-II(Semester-III)Lab Course 305

2. If request i <= Available, go to step 3. Otherwise, Pi must wait, since the resources are not
available.
3. Assume that the system pretends to have allocated the requested resources to the process Pi by
modifying the state as follows:

a) Available = Available - Request i
b) Allocation i = Allocation i + Request i
c) Need i = Need i - Request i

If the resulting resource-allocation state is safe, the transaction is completed and process Pi is
allocated its resources i.e. the request is granted immediately. If the resulting resource-allocation
state is unsafe, then the process Pi must wait for Request i and the old transaction i.e. assumed
resource- allocation state is restored. That is because the system is not in safe state, so request is
not granted immediately.

Set A
Q.1) Consider the following snapshot of a system:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

1. Display the contents of Need array.
2. Check whether the system is in safe state or not. If yes, give the safe sequence.

Q.2) Consider the following snapshot of a system:
1. Display the contents of Need array.
2. Check whether the system is in safe state or not. If yes, give the safe sequence.

M.C.A-II(Semester-III)Lab Course 305

Set B
Q.1) Consider the following snapshot of a system:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

1. Display the contents of Need array.
2. Check whether the system is in safe state or not. If yes, give the safe sequence.
3. If a request from process P1 arrives for (1, 0, 2) can it be immediately granted?

Allocation Max Available

A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

M.C.A-II(Semester-III)Lab Course 305

Q.2) Consider the following snapshot of a system:
Consider the following snapshot of a system. A system has five processes, A through E
and four types of the resources, R1 to R4.Answer the following questions using Banker’s
algorithm.

1. Display the contents of Need array.
2. Check whether the system is in safe state or not. If yes, give the safe sequence.
3. If a request from process P4 arrives for (0, 4, 2, 0) can it be immediately granted.

Q.3) Consider the following snapshot of a system:
1. Display the contents of Need array.
2. Check whether the system is in safe state or not. If yes, give the safe sequence.
3. If a request from process P4 arrives for (0, 0, 1) can it be immediately granted.

Process Allocation Max
Available

R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

A 3 0 1 1 4 1 1 1 6 3 4 2

B 0 1 0 0 0 2 1 2

C 1 1 1 0 4 2 1 0

D 1 1 0 1 1 1 1 1

E 0 0 0 0 2 1 1 0

Allocation Max Available

A B C A B C A B C

P0 0 1 0 0 1 0 0 0 0

P1 2 0 0 4 0 2

P2 3 0 3 3 0 3

P3 2 1 1 3 1 1

P4 0 0 2 0 0 1

M.C.A-II(Semester-III)Lab Course 305

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 3
Paging
Ready reference
Basic memory management concept:
1. Main memory is a central part of the computer system.CPU and I/O system interact with

memory.

 Logical address is the address generated by CPU or programs.

 Physical address is the address where actual program data are stored in memory.

2. Virtual memory is something that appears to exist, but actually does not exist. Virtual

memory makes the task of programming much easier, because the programmer no longer

needs to worry about the amount of physical memory available. If memory requirement of a

program is larger than available memory then virtual memory is used.

3. Paging is a non-contiguous memory management scheme. User program will allocate a

memory wherever available. In the paging memory-management scheme, the operating

system retrieves data from secondary storage in same-size blocks called pages. The main

advantage of paging is that it allows the physical address space of a process to be

noncontiguous.

4. Logical memory is the user’s memory .It is divided into number of equal units called

Logical memory is the user’s memory .It is divided into number of equal units called pages.

5. Physical memory is divided into number of equal units called frames.

6. Page table is used to map a page on a frame.

Demand paging –A page is demanded or requested by a user program, if not present in the

memory i.e. in frame .Then it is given from secondary storage device. When a user program tries

to access the page which is not present in memory, the situation is called as page fault.

Page replacement:

Memory management is one of the important responsibilities of the operating system. In program

execution it may happen that there is no free frame available then a page fault occurs, System

cannot terminate the user program, because of virtual memory.

To bring user page into the frame, a frame is freed and user page brought in. The process of

freeing the frame is called as page replacement.

M.C.A-II(Semester-III)Lab Course 305

The important part is that which frame should be freed. This frame is called as victim frame and

the page present on that frame is called victim page.

Steps involved in page replacement are:
1. Find the location of the desired page on the disk.
2. Find a free frame:

a. If there is a free frame, use it.
b. If there is no free frame, use a page replacement algorithm to select a victim frame
c. write the victim frame to the disk; change the page and frame tables accordingly.

3. Read the desired page into the newly freed frame; change the page and frame tables.
4. Restart the user process.

Page Replacement Algorithm:
O. S. uses one of the page replacement schemes lesser the page fault rate, better the page

replacement algorithm.

The various page replacement algorithms are:

 FIFO

 Optimal Replacement

 LRU

 LRU approximation using reference bit/bits

 MRU

 Second chance algorithm

 LFU

 MFU

Input of page replacement algorithm is reference string reference string is stored page numbers

of demand pages and next input is the no of page frames available & its main function is to load

required page in free frame.

If there is no free frame then it select victim page.

Generation of reference string as follows:

Consider a address sequence 0100, 0432, 0101,0612,0611,0105....
At 100 bytes per page, this sequence is reduced to the following reference string

1, 4, 1, 6, 1, 6, 1.......

M.C.A-II(Semester-III)Lab Course 305

FIFO (First In First Out):

In this algorithm all available frames are given to the pages from reference string serially. i.e.

first frame to first pass, second frame to second page & so on. All available/free frames are over

at that time, the first frame is selected as victim frame, next time second frame is selected and so

on.

Note: If page is not present in frame then page fault is counted.

Data Structure:

1. M: total no of reference string.

2. RS: Stores reference string i.e demand page number.

3. F: available n free frames.

4. Rear: page is stored at rear frame after insertion rear is increments by one.

5. Front: It always points to first page after deletion it is increment by one.

Algorithm:

1. Find out first free frame.
2. If free frame is not available then free front frame and update rear and Front
3. Load F[rear] =RS [currp] page
4. Update rear, front, currp.
5. Count the page fault.
6. Repeat steps 1 to 5 till reference string not over.
7. Stop.

LRU (Least Recently Used):

It selects least recently used page of the main memory as a victim page. It refers to the past

reference of the pages. The one which is not used for longest time is selected for replacement.

In short LRU selects the farthest page in the left hand side direction of currently faulted page.

LRU is implemented using (A) counter (B) stack.

(A) Using Counter

Data Structure:

1. M: total no of reference string.

M.C.A-II(Semester-III)Lab Course 305

2. RS: Stores reference string i.e demand page number.

3. F: available n free frames.

4. Counter: is attached with each page. It counts page is referenced or not .Select

smallest count page which is least recently used is selected for the victim page.

Algorithm:

1. Find out first free frame.
2. If free frame not available then free least recently used page from frame using past

reference i.e. from RS [0] to RS[currp]
3. Load RS [currp] into the LRU page frame
4. currp++
5. Count the page fault
6. Repeat step 1 to 5 till reference string is not over
7. Stop.

(B) Using stack

Data Structure:

1. M: total no of reference string.

2. RS: Stores reference strings i.e. demand page number.

3. F: available n free frames.

4. Stack: To keep a stack of page numbers. Whenever a page is referenced, it is

removed from stack and put on the top. In this way least recently used pages are

found at bottom of the stack.

Algorithm:

1. Find out first free frame
2. If free frame not available then free least recently used page stack (access the page

which is stored at bottom)
3. Load RS[currp] into the LRU page frame
4. currp++
5. count the page fault
6. Repeat step 1 to 5 till reference string is not over
7. Stop.

M.C.A-II(Semester-III)Lab Course 305

Second Chance Algorithm:

Data Structure:

1. M: total no of reference string.

2. RS: Stores reference strings i.e. demand page number.

3. F: available n free frames.

4. Ref_bit: Reference bit of page which stores 1 or 0.

Algorithm:

1. Find out first free frame.

2. If free frame is not available then Ref_bit of page is checked serially, if it is 0 then

the bit is set to 1and page is replaced. If it is 1 the bit is set to zero. The first page

along with reference bit 0 will appear at first position and will be selected for

replacement.

3. Load F =RS [currp] page

4. Count the page fault.

5. Repeat steps 1 to 4 till reference string not over.

6. Stop.

MFU (Most Frequently Used):

Data Structure:

1. M: total no of reference string.

2. RS: Stores reference string I. E demand page number.

3. F: available n free frames.

4. Counter: A reference counter.

Algorithm:

1. Find out first free frame.

2. If free frame is not available then select MFU page using reference counter

M.C.A-II(Semester-III)Lab Course 305

3. Load F =RS [currp] page

4. Update currp and reference counter.

5. Count the page fault.

6. Repeat steps 1 to 5 till reference string not over.

7. Stop.

Optimal replacement:
Data Structure:

1. M: total no of reference string.

2. RS: Stores reference string i.e. demand page number.

3. F: available n free frames.

Algorithm

1. Find out first free frame

2. If free frame not available then free optimal page from frame using future reference
i.e. from RS [currp] to RS[M]

3. Load RS[currp] into the optimal page frame

4. count the page fault

5. Increment currp by one

6. Repeat step 1 to 5 till reference string is not over

7. Stop.

Note: Students can use suitable data structure, if necessary.

Set A
Q1.Consider the following page reference string:

1,2,3,4,1,2,5,1,2,3,4,5
Write the simulation program to find page faults occur for the following page replacement
algorithm. Assume three frames.
a) LRU page replacement. b) Optimal page replacement.

Q2. Write the simulation program for demand paging and show the page scheduling and total

number of page faults using following algorithms. Assume memory of n frames. Consider

M.C.A-II(Semester-III)Lab Course 305

following page reference string:

a) 7,0,1,2,0,3,0,4,2,3,0,3,2,,1,2,0,1,7,0,1

b) 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

1) Implementation of FIFO

2) Implementation of LRU using STACK

3) Implementation of LRU using COUNTER

Set B
Write the simulation program for demand paging and show the page scheduling and total number

of page faults using following algorithms. Assume memory of n frames. Consider following

page reference string:

a) 9,14,10,11,15,9,11,9,15,10,9,15,10,12,15

b) 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

1) Implementation of second chance.

2) Implementation of MFU
Set C
Write the simulation program for demand paging and show the page scheduling and total number

of page faults using following algorithms. Assume memory of n frames. Consider following

page reference string:

a) 9,14,10,11,15,9,11,9,15,10,9,15,10,12,15

b) 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

1) Implementation of Optimal page replacement

2) Implementation of LFU

3) Implementation of MRU

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 4
FILE ALLOCATION METHODS
The main idea behind allocation is effective utilization of file space and fast access of the files.
There are three types of allocation:

Sequential (contiguous)
Each file occupies a set of contiguous blocks on the disk.

 Simple – only starting location (block #) and length (number of blocks) are required.

Random access.

 Wasteful of space (dynamic storage-allocation problem).

 Files cannot grow.

Linked

 Simple – need only starting address

 Free-space management system – no waste of space

 No random access

Indexed
 Need index table

 Random access

 Dynamic access without external fragmentation, but have overhead of index block.

Set A
Write a C Program to simulate Sequential (contiguous) File Allocation Method. Assume Disk of size‘d’,
value of which should be taken from user. Use separate Tables (implemented using linked lists) to keep
track of Used and Free space respectively. Make use of the following Menu to perform Operations:

1) Allocate space for newly created file.

2) Deallocate space for now-deleted file.

3) Show Used and/or Free Space on Disk.

4) Exit

M.C.A-II(Semester-III)Lab Course 305

Set B
Write a C Program to simulate Linked File Allocation Method. Assume Disk of size‘d’, value of which
should be taken from user. Use separate Tables (implemented using linked lists) to keep track of Used and
Free space respectively. Make use of the following Menu to perform Operations:

1) Allocate space for newly created file.

2) Deallocate space for new-deleted file.

3) Show Used and/or Free Space on Disk.

4) Exit

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 5
Disk Scheduling

 File systems must be accessed in an efficient manner, especially with hard drives, which

are the slowest part of a computer. As a computer deals with multiple processes over a

period of time, a list of requests to access the disk builds up. For efficiency purposes, all

requests (from all processes) are aggregated together. The technique that the operating

system uses to determine which requests to satisfy first is called disk scheduling.

 One of the responsibilities of the OS is to use the hardware efficiently. For the disk

drives, meeting this responsibility entails having fast access time and large disk

bandwidth.

 The access time has two major components.

 The seek time is the time for the disk arm to move the heads to the cylinder containing

the desired sector.

 The rotational latency is the additional time for the disk to rotate the desired sector to the

disk head.

 The disk bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer.

 We can improve both the access time and the bandwidth by scheduling the servicing of

disk I/O requests in a good order.

 For a multiprogramming system with many processes, the disk queue may often have

several pending requests. Thus, when one request is completed, the OS chooses which

pending request to service next. How does the OS make this choice?

Disk scheduling algorithms:

FCFS Scheduling:

 The simplest form of disk scheduling is the first-come, first-served (FCFS) algorithm. This

algorithm is intrinsically fair, but it generally does not provide the fastest service.

SSTF Scheduling:

M.C.A-II(Semester-III)Lab Course 305

 It seems reasonable to service all the requests close to the current head position before
moving the head far away to service other requests. This assumption is the basis for the
shortest-seek-time-first (SSTF) algorithm.

 The SSTF algorithm selects the request with the minimum seek time from the current head
position.

 Since seek time increases with the number of cylinders traversed by the head, SSTF
chooses the pending request closest to the current head position.

SCAN Scheduling:

 In the SCAN algorithm, the disk arm starts at one end of the disk and moves toward the
other end, servicing requests as it reaches each cylinder, until it gets to the other end of the
disk.

 At the other end, the direction of head movement is reversed, and servicing continues. The
head continuously scans back and forth across the disk.

 The SCAN algorithm is sometimes called the elevator algorithm, since the disk arms
behaves just like an elevator in a building, first servicing all the requests going up and then
reversing to service requests the other way.

C-SCAN Scheduling:

 Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a more
uniform wait time.

 Like SCAN, CSCAN moves the head from one end of the disk to the other, servicing
requests along the way.

 When the head reaches the other end, however, it immediately returns to the beginning of
the disk, without servicing any requests on the return trip.

LOOK Scheduling:

 As we described them, both SCAN and C-SCAN move the disk arm across the full width of
the disk.

 In practice, neither algorithm is often implemented this way. More commonly, the arm goes
only as far as the final request in each direction.

 Then, it reverses direction immediately, without going all the way to the end of the disk.
 Versions of SCAN and C-SCAN that follow this pattern are called LOOK and C-LOOK

scheduling, because they look for a request before continuing to move in a given direction.

C-LOOK Scheduling:

 This is just an enhanced version of C-SCAN. In this the scanning doesn't go past the last
request in the direction that it is moving. It too jumps to the other end but not all the way to
the end. Just to the furthest request.

M.C.A-II(Semester-III)Lab Course 305

Set A

1. Write an OS program to implement FCFS algorithm.

2. Write an OS program to implement SSTF algorithm.

Set B

1. Write an OS program to implement SCAN algorithm.

2. Write an OD program to implement S-SCAN algorithm.

Set C

1. Write an OS program to implement LOOK algorithm.

2. Write an OS program to implement C-LOOK algorithm.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SECTION II

CORE JAVA

M.C.A-II(Semester-III)Lab Course 305

SESSION 1

Java Tools

Reading

You should read the following topics before starting this exercise

1. Creating, compiling and running a java program.
2. The java virtual machine.
3. Java tools like javac, java, javadoc, javap and jdb.
4. Java keywords Syntax of class.

Ready Reference

Java Tools

 javac:-javac is the java compiler which compiles .java file into .class file(i.e.
bytecode). If the program has syntax errors, javac reports them. If the program is
error-free, the output of this command is one or more .class files.

Syntax: javac fileName.java

 java:- This command starts Java runtime environment, loads the specified .class file
and executes the main method.

Syntax: java fileName

 javadoc:-javadoc is a utility for generating HTML documentation directly from
comments written in Java source code.Javadoc comments have a special form but
seems like an ordinary multiline comment to the compiler.

Syntax of the comment:

/** A sample doc comment */

Syntax: javadoc [options] [packagenames] [sourcefiles] [@files]

Where,

o packagenames: A series of names of packages, separated by spaces
o sourcefiles: A series of source file names, separated by spaces
o @files: One or more files that contain packagenames and sourcefiles in any

order, one name per line. Javadoc creates the HTML documentation on the
basis of the javadoc tags used in the source code files.

M.C.A-II(Semester-III)Lab Course 305

 jdb: - jdb helps you find and fix bugs in Java language programs. This debugger has
limited functionality.
Syntax: jdb [options] [class] [arguments]

o options : Command-line options.
o class : Name of the class to begin debugging.
o arguments : Arguments passed to the main() method of class.

After starting the debugger, the jdb commands can be executed. The important jdb commands
are:

1. help, or?: The most important jdb command, help displays the list of
recognized commands with a brief description.

2. run: After starting jdb, and setting any necessary breakpoints, you can use this
command to start the execution the debugged application.

3. cont: Continues execution of the debugged application after a breakpoint,
exception, or step.

4. print: Displays Java objects and primitive values. For variables or fields of
primitive types, the actual value is printed. For objects, a short description is
printed.

Examples: print MyClass.myStaticField

print myObj.myInstanceField

print i + j + kprint myObj.myMethod()//if myMethod returns
non-null .

5. dump: For primitive values, this command is identical to print. For objects, it
prints the current value of each field defined in the object. Static and instance
fields are included.

6. next: The next command advances execution to the next line in the current
stack frame.

7. step: The step commands advances execution to the next line whether it is in
the current stack frame or a called method. Breakpoints can be set in jdb at
line numbers, constructors, beginning of a method.

 javap: - The javap tool allows you to query any class and find out its list of methods
and constants.
javap [options] class

M.C.A-II(Semester-III)Lab Course 305

Setting CLASSPATH

The classpath is the path that the Java runtime environment searches for classes and
other resource files. The class path can be set using either the –classpath option or by
setting the CLASSPATH environment variable.

The -classpath option is preferred because you can set it individually for each
application without affecting other applications and without other applications
modifying its value. The default value of the class path is ".", meaning that only the
current directory is searched. Specifying either the CLASSPATH variable or the -cp
scommand line switch overrides this value.

javac –classpath \myProg\myPackage; \myProg\otherclasses

Or

CLASSPATH= classpath1;classpath2...

export CLASSPATH

Lab Assignments

SET A

1. Using javap, view the methods of the following classes from the lang
package: Object, String and Math. Type the following command and view
the bytecodes. javap –c MyClass

2. Execute it using the following command. This gives a list of the classes
loaded by the JVM. java –verbose MyClass

SET B

1. Define a class MyMaths having two private int data members. Write a default
constructor to initialize it to 0 and another constructor to initialize it to a value
(Use this). Write methods additionIS, subtractionIs , divisionIs, and
multiplicationIs. Create an object in main. Use command line arguments to
pass a value to the object (Hint : convert string argument) to integer) and
perform the above tests. Provide javadoc comments for all constructors and
methods and generate the html help file.

M.C.A-II(Semester-III)Lab Course 305

2. Save program (MyClass.java with a command line argument) in a folder
named javaprgs. Set the CLASSPATH to this folder. Compile the program
and use jdb to trace the program execution. Type the following commands
and see the execution. jdb MyClass 10

a. help
b. stop in MyClass.main
c. run
d. next
e. next
f. Continue typing next till the program ends. Repeat the above process

and type command step instead of next. Observe the output.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 2

Array of Objects, Packages

Reading

You should read the following topics before starting this exercise:

1. Structure of a class in java.
2. Declaring class reference.
3. Creating an object using new.
4. Declaring an array of references.
5. Creating an array of objects.
6. Syntax of the package command.
7. Syntax of the import command.

Ready Reference

 Static fields and methods:
Static fields are class variables which have the “static” modifier. They don’t belong to
the instance but belong to the class. Static methods are used to access static members
of a class. To access a static member, use the following syntax:

ClassName.staticMember

ClassName.staticMethod(arguments)

 Creating objects:
ClassName referenceName;

referenceName = new ClassName();

OR

ClassName referenceName = new ClassName();

 Overriding toString method of the Object class:
The toString method gives a string representation of an object. To over-ride the

toString method for a user defined class, use the syntax:

public String toString()

{

// return a string representation of the object

}

M.C.A-II(Semester-III)Lab Course 305

 Declaring an array of references:
ClassName[] arrayName = new ClassName[size];

 Creating an array of objects:
for each reference in the array

{ Create an object using new

}

Example:

Student[] studentArray = new Student[10];

for(i=0; i<10; i++)

studentArray[i] = new Student();

 Command line arguments :
We can pass information to main from the command line using command line
arguments. These are stored in an array of Strings which is passed to main as an
argument.

public static void main(String[] args)

Here, args is the name of the array. The total number of arguments can be obtained
using args.length . To access each argument, use a for loop as shown:

for(int i=0; i<args.length ; i++)

System.out.println(“Argument ”+ i + “ = “ + args[i]);

To convert the argument from String to any type, use Wrapper classes.

 Simple I/O :
To read a String from the console, use the following code:

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);

Or

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

M.C.A-II(Semester-III)Lab Course 305

For this, you will have write the following statement at the beginning:

import java.io.*;

 Packages:
A package is a collection of related classes and interfaces. It provides a mechanism
for compartmentalizing classes. The Java API is organized as a collection of several

predefined packages. The java.lang package is the default package included in all java

programs. The commonly used packages are:

java.lang Language support classes such as Math, Thread, String

java.util Utility classes such as LinkedList, Vector , Date.

java.io Input/Output classes

java.awt For graphical user interfaces and event handling.

javax.swing For graphical user interfaces

java.net For networking

java.applet For creating applets.

 Creating a package:
To create a user defined package, the package statement should be written in the
source code file. This statement should be written as the first line of the program.
Save the program in a directory of the same name as the package.

package packageName;

 Accessing a package :
To access classes from a package, use the import statement.

import packageName.*; //imports all classes

import packageName.className; //imports specified class

Note that the package can have a hierarchy of subpackages. In that case, the package

name should be qualified using its parent packages. Example: project.sourcecode.java

Here, the package named project contains one subpackage named sourcecode which

contains a subpackage named java.

M.C.A-II(Semester-III)Lab Course 305

 Access Rules :
The access rules for members of a class are given in the table below.

Access to Public Protected Default Private

Same class Yes Yes Yes Yes

Class in same package Yes Yes Yes No

Subclass in any package Yes Yes No No

Non subclass in other package Yes No No No

Lab Assignments

SET A

1. Define a Employee class (name, position, salary). Define a default and parameterized
constructor. Override the toString method. Keep a count objects created. Create
objects using parameterized constructor and display the object count after each object
is created. (Use static member and method). Also display the contents of each object.

2. Create a class MyDate with day, month and year as members. Write appropriate
member functions. Create another class Employee, which has id, name, date of birth,
date of joining and salary as members (use MyDate for date fields). Write appropriate
constructor for the Employee which assigns values to the members. Accept the details
as command line arguments and create a Employee object using the arguments.
Display the payslip details in a proper format.

3. Define a class Student (name, roll_no, class and marks of 6 subjects). Create an array
of n Student objects. Calculate the percentage of each student using a method per().
Define a static method “sortStudent” which sorts the array on the basis of percentage.
Display the student details in sorted order.

SET B

1. Create a package named com. Define subpackages;
transact: with class Transaction with static methods credit() and debit()

loan: with class LoanAccount with method doTransaction() which calls Transaction
class mehods.

M.C.A-II(Semester-III)Lab Course 305

Create one LoanAccount object in main to perform operations on it by accepting
command line arguments.

2. Write a Java program to create a Package “MCA_I” which has a class McaIMarks
(members – SemITotal, SemIITotal). Create another package MCA_II which has a
class McaIIMarks (members – SemITotal, SemIITotal). Create n objects of Student
class (having rollNumber, name, McaIMarks and McaIIMarks). Add the marks of
McaI and McaII calculate the Grade (‘A’ for >= 70, ‘B’ for >= 60 ‘C’ for >= 50 ,
Pass Class for > =40 else ‘FAIL’) and display the result of the student in proper
format.

SET C

1. Create a package called ‘ListPack’ which contains the classes ‘Node’ ,
‘singLinkedList’ , ‘dablLinkedList’ and ‘cirLinkedList’. Write a program to create a
linked list of 5 nodes in main (type will be define by user) and display the elements.
The elements are passed as command line arguments.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 3

Inheritance and Interfaces

Reading

You should read the following topics before starting this exercise:

1. Concept of inheritance.
2. Use of extends keyword.
3. Concept of abstract class.
4. Defining an interface.
5. Use of implements keyword.

Ready Reference

 Inheriting a class : The syntax to create a subclass is :
class SubClassName extends SuperClassName

{ //class body

}

Example:

class Manager extends Employee

{ //code }

 Types of Inheritance
1. Single inheritance
2. Multiple inheritance
3. Multilevel inheritance
4. Hierarchical inheritance
5. Hybrid inheritance

 Access in subclass :
The following members can be accessed in a subclass:

o public or protected superclass members.
o Members with no specifier if subclass is in same package.

 The “super” keyword :
It is used for three purposes:

o Invoking superclass constructor -super(arguments)
o Accessing superclass members – super.member
o Invoking superclass methods – super.method(arguments)

M.C.A-II(Semester-III)Lab Course 305

 Dynamic binding:
When over-riding is used, the method call is resolved during run-time i.e. depending
on the object type, the corresponding method will be invoked.

Example:

A ref;

ref = new A();

ref.method1(10); //calls method of class A

ref = new B();

ref.method1(20); //calls method of class B

 Overriding methods :
Redefining superclass methods in a subclass is called overriding. The signature of the

subclass method should be the same as the superclass method.

class A {

void method1(int num) {

//code }

}

class B extends A{

void method1(int x) {

//code }

}

 Abstract class :
An abstract class is a class which cannot be instantiated. It is only used to create

subclasses. A class which has abstract methods must be declared abstract. An abstract

class can have data members, constructors, method definitions and method
declarations.

M.C.A-II(Semester-III)Lab Course 305

abstract class ClassName

{

...

}

 Abstract method
An abstract method is a method which has no definition. The definition is provided by
the subclass.

abstract returnType method(arguments);

 Interface
An interface is a pure abstract class i.e. it has only abstract methods and final
variables. An interface can be implemented by multiple classes.

interface InterfaceName {

//abstract methods

//final variables

}

 Cloning :
Cloning creates an identical copy of an object. To clone an object of a class, the class

must implement Cloneable interface. This is an empty interface (tagging or marker

interface). To clone objects of a class, over-ride the clone() method of the Object
class.

class MyClass implements Cloneable {

public Object clone() {

MyClass cloned = super.clone();

//clone members if required

return cloned; } }

M.C.A-II(Semester-III)Lab Course 305

Lab Assignments

Set A

1. Create an abstract class Student with methods disp_roll_no and calc_total_marks.
Derive three classes McaStudent (marks of 6 subject as members),
MscStudentfrom(marks of 4 subject as members) and BcsStudent(marks of 8
subject as members) from it. Create set of n students in main. Calculate total and
display roll number with total of each student.. (Use method overriding).

2. Define an interface “QueueOperations” which declares methods for a static queue.
Define a class “MyQueue” which contains an array and front and rear as data
members and implements the above interface. Initialize the queue using a
constructor. Write a menu driven program to perform operations on a queue
object.

3. Define a class Staff with memers id, name, DOB, joining_date and salary. Define
class TeachingStaff with members subjects[], experience and extends Staff also
define class NonTeachingStaff with members department, shift and extends Staff.
now define array DepatStaff with members from TeachingStaff and
NonTeachingStaff as per requirement . Display details of all objects.

SET B

1. Define a class “Student” which has members Roll_no, name, date of birth. Define
another class “CR” which has members class name and date of selection and
extends Student. Create n objects of the CR class and clone them. (Use the
Cloneable interface)

2. Define an abstract class “car” with members reg_no, model, reg_date. Define two
subclasses of this class – “transportVehicles ” (validity_no, start_date, period) and
“privateVehicle ” (owner_name, owner_address). Define appropriate constructors.
Create n objects which could be of either transportVehicles or privateVehicle
class by asking the user’s choice. Display details of all “privateVehicle” objects
and all “transportVehicles” objects.

M.C.A-II(Semester-III)Lab Course 305

SET C

1. Create an interface “CreditCardInterface” with methods to viewCreditAmount,
viewPin, changePin, useCard and payBalance. Create a class Customer (name,
card number, pin, creditAmount – initialized to 0). Implement methods
viewCreditAmount, viewPin, changePin and payBalance of the interface. From
Customer, create classes RegularCardHolder (maxCreditLimit) and
GoldCardHolder (String specialPrivileges) and define the remaining methods of
the interface Create n objects of the RegularCardHolder and GoldCardHolder
classes and write a menu driven program to perform the following actions
1. Use Card

2. Pay Balance

3. Change Pin

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 4

Exception Handling and assertion

Reading

You should read the following topics before starting this exercise:

1. Concept of Exception
2. Exception class hierarchy.
3. Use of try, catch, throw, throws and finally keywords
4. Defining user defined exception classes
5. Assertions

Ready Reference

Exception: An exception is an abnormal condition that arises in a code at run time. When an
exception occurs,

1. An object representing that exception is created.
2. The method may handle the exception itself.
3. If the method cannot handle the exception, it “throws” this exception object to the

method which called it.
4. The exception is “caught” and processed by some method or finally by the default

java exception handler.

Predefined Exception classes

Java provides a hierarchy of Exception classes which represent an exception type.

 Throwable

 Error Exception
 RuntimeException

 Unchecked
 errors
 Unchecked

 exceptions
 Checked

 exceptions

M.C.A-II(Semester-III)Lab Course 305

Exception handling keywords

Exception handling in java is managed using 5 keywords: try , catch , throw, throws, finally

Syntax:

try {

// code that may cause an exception

}

catch (ExceptionType1 object) {

// handle the exception

}

catch (ExceptionType2 object) {

// handle the exception

}

finally {

// this code is always executed

}

Note: try-catch blocks can be nested.

throw keyword:

The throw keyword is used to throw an exception object or to rethrow an exception.

throw exceptionObject;

Example:

catch(NumberFormatException e) {

System.out.println(“Caught and rethrown”) ;

throw e;

}

We can explicitly create an exception object and throw it. For example:

M.C.A-II(Semester-III)Lab Course 305

throw new NumberFormatException();

throws keyword

If the method cannot handle the exception, it must declare a list of exceptions it may cause.
This list is specified using the throws keyword in the method header. All checked exceptions
muct be caught or declared.

Syntax:

returnType methodName(arguments) throws ExceptionType1

[,ExceptionType2...]

{

//method body

}

Exception Types:

There are two types of Exceptions, Checked exceptions and Unchecked exceptions. Checked
exceptions must be caught or rethrown. Unchecked exceptions do not have to be caught.

 IllegalMonitorStateException : Illegal monitor operation, such as waiting on an
unlocked thread.

 IllegalStateException : Environment or application is in incorrect state.
 IllegalThreadStateException : Requested operation not compatible with current

thread state.
 IndexOutOfBoundsException: Some type of index is out-of-bounds.
 NegativeArraySizeException: Array created with a negative size.

 NullPointerException : Invalid use of a null reference.
 NumberFormatException : Invalid conversion of a string to a numeric format.
 SecurityException : Attempt to violate security.

 StringIndexOutOfBounds : Attempt to index outside the bounds of a string.
 UnsupportedOperationException : An unsupported operation was encountered.

Checked Exceptions:

 ClassNotFoundException : Class not found.
 CloneNotSupportedException : Attempt to clone an object that does not implement

the Cloneable interface.

 IllegalAccessException : Access to a class is denied.
 InstantiationException : Attempt to create an object of an abstract class or interface.

M.C.A-II(Semester-III)Lab Course 305

 InterruptedException : One thread has been interrupted by another thread.
 NoSuchFieldException : A requested field does not exist.

 NoSuchMethodException : A requested method does not exist.

User Defined Exceptions:

A user defined exception class can be created by extending the Exception class.

class UserDefinedException extends Exception {

//code

}

When that exception situation occurs, an object of this exception class can be created
and thrown. For example, if we are accepting an integer whose valid values are only
positive, then we can throw an “InvalidNumberException” for any negative value
entered.

class NegativeNumberException extends Exception {

NegativeNumberException(int n){

System.out.println(“Negative input “+ n);

}

}

Unchecked Exceptions:

 ArithmeticException : Arithmetic error, such as divide-by-zero.

 ArrayIndexOutOfBoundsException : Array index is out-of-bounds.
 ArrayStoreException : Assignment to an array element of an incompatible type.
 ClassCastException : Invalid cast.

 IllegalArgumentException : Illegal argument used to invoke a method.

Assertions:

An assertion is a statement containing a boolean expression that is assumed to be true
when the statement is executed. The system reports an AssertionError if the
expression evaluates to false. For example, if you write a method that measures the
current speed of a vehicle, you might want to ensure that the speed is less than the
maximum vehicle speed.

M.C.A-II(Semester-III)Lab Course 305

Assertions can be in two forms:

assert Expression1;

assert Expression1 : Expression2;

where : Expression11 is a boolean expression, Expression2 is an expression that has a
value.

Example: assert i > 0;

assert i % 3 == 2 : i;

Enabling and Disabling Assertions:

By default, assertions are disabled. You enable them by running the program
with the enableassertionsor -eaoption. To disable assertions, use the –daor –
disableassertions flag.

Examples:

java -enableassertions MyClass

java -ea:MyClass -ea:Pack1.MyClass2 MyApp

java –ea:MyClass –da:MyClass3 MyApp

Lab Assignments

SET A

1. Create a class Doctor with attributes id, name, age and department. Initialize values
through parameterized constructor. If age of Doctor is not in between 25 and 65 then
generate user-defined exception “AgeNotWithinRangeException”. If name contains
numbers or special symbols raise exception “NameNotValidException”. Define the
two exception classes.

2. A program accepts two numbers as command line arguments. It displays all odd
numbers in between . Using assertions, validate the input for the following criteria:
Both should be positive integers. The second should be larger than the first.

3. Define Exceptions VowelException ,BlankException,ExitException. Write another
class Test which reads a character from command line. If it is a vowel, throw
VowelException,if it is blank throw BlankException and for a character 'X' throw an
ExitException and terminate program. For any other character, display “Valid
character”.

M.C.A-II(Semester-III)Lab Course 305

SET B

1. Define class EmailId with members, username, domainId and password. Define
default and parameterized constructors. Accept values from the command line and
create a date object. Throw user defined exceptions – “InvalidUsernameException” or
“InvalidPasswordException” if the uaername and password are invalid. If the date is
valid, display message “Valid Email Id”.

2. Write a program which accept two integers and an arithmetic operator from the
command line and performs the operation. Fire the following user defined exceptions:

a. If the no of arguments are less than 3 then fire
“IllegalNumberOfArguments”

b. If the operator is not an Arithmetic operator, throw
“InvalidOperatorException”.

c. If result is –ve, then throw “NegativeResultException”

SET C

1. A program accepts two integers as command line arguments. It displays all prime
numbers between these two. Validate the input for the following criteria: Both should
be positive integers. The second should be larger than the first. Create user defined
exceptions for both.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 5

I/O and File Handling

Reading

You should read the following topics before starting this exercise:

1. Strings
2. Concept of streams
3. Types of streams
4. Byte and Character stream classes.
5. The File class

Strings Class

The String class represents character strings. All string literals in Java programs, such
as "abc", are implemented as instances of this class.

String Constructor

String()
Initializes a newly created String object so that it represents an empty character
sequence.

String(String strobj)
Creates a String using string object.

String(char[] arrchar)
Constructs a new String by decoding the specified array of characters.
Eg. String s= new String(arrchar);

String(byte[] bytes, Charset charset)
Constructs a new String by decoding the specified array of bytes using the specified
charset.

Creating Strings

Strings are constant; their values cannot be changed after they are created. String
buffers support mutable strings. Because String objects are immutable they can be
shared. For example:

String str = "abc";

is equivalent to:

char data[] = {'a', 'b', 'c'};

M.C.A-II(Semester-III)Lab Course 305

String str = new String(data);

String Methods

Methods Description

char charAt(int index) Returns the character at the specified

index.

int compareTo(Object o) Compares this String to another Object.

int compareTo(String anotherString) Compares two strings lexicographically.

String concat(String str) Concatenates the specified string to the end of
this string.

boolean endsWith(String suffix) Tests if this string ends with the specified
suffix.

boolean equals(Object anObject) Compares this string to the specified object.

int indexOf(int ch) Returns the index within this string of the first
occurrence of the specified character.

int lastIndexOf(int ch) Returns the index within this string of the last
occurrence of the specified character.

int length() Returns the length of this string.

String replace(char oldChar, char newChar) Returns a new string resulting from

replacing all occurrences of oldChar in this

string with newChar.

String[] split(String regex) Splits this string around matches of the given
regular expression.

boolean startsWith(String prefix) Tests if this string starts with the specified
prefix.

String substring(int beginIndex) Returns a new string that is a substring of this
string.

String substring(int beginIndex, int endIndex) Returns a new string that is a substring

of this string..

String toLowerCase() Converts all of the characters in this String to lower case using
the rules of the default locale.

M.C.A-II(Semester-III)Lab Course 305

String toString() This object (which is already a string!) is itself
returned.

String toUpperCase() Converts all of the characters in this String to upper
case using the rules of the default locale.

String trim() Returns a copy of the string, with leading and trailing
whitespace omitted.

static String valueOf(primitive data type x) Returns the string representation of the

passed data type argument.

String Buffer class

The java.lang.StringBuffer class is a thread-safe, mutable sequence of characters.

Class constructors

StringBuffer()
This constructs a string buffer with no characters in it and an initial capacity of 16
characters.

StringBuffer(CharSequence seq)
This constructs a string buffer that contains the same characters as the specified
CharSequence.

StringBuffer(int capacity)
This constructs a string buffer with no characters in it and the specified initial
capacity.

StringBuffer(String strobj)
This constructs a string buffer initialized to the contents of the specified string.

Class methods

Methods Description

StringBuffer append(char[] str) This method appends the string representation
of the char array argument to this sequence.

int capacity() This method returns the current capacity.

StringBuffer delete(int start, int end) This method removes the characters in a
substring of this sequence.

M.C.A-II(Semester-III)Lab Course 305

StringBuffer deleteCharAt(int index) This method removes the char at the specified
position in this sequence.

void ensureCapacity(int minimumCapacity) This method ensures that the capacity is
at least equal to the specified minimum.

StringBuffer insert(int offset, boolean b) This method inserts the string
representation of the boolean argument into this sequence.

StringBuffer insert(int offset, char c) This method inserts the string
representation of the char argument into this sequence.

StringBuffer replace(int start, int end, String str) This method replaces the characters
in a substring of this sequence with characters in the specified String.

StringBuffer reverse() This method causes this character
sequence to be replaced by the reverse of the sequence.

String Tokenizer Class

The java.util.StringTokenizer class allows an application to break a string into
tokens.

Class constructors

StringTokenizer(String str)
This constructor a string tokenizer for the specified string.

StringTokenizer(String str, String delim)
This constructor constructs string tokenizer for the specified string.

StringTokenizer(String str, String delim, boolean returnDelims)
This constructor constructs a string tokenizer for the specified string.

Class methods

Methods Description

int countTokens() This method calculates the number of times that this
tokenizer's nextToken method can be called before it generates an exception.

boolean hasMoreElements() This method returns the same value as the
hasMoreTokens method.

boolean hasMoreTokens() This method tests if there are more tokens available
from this tokenizer's string.

M.C.A-II(Semester-III)Lab Course 305

Object nextElement() This method returns the same value as the
nextToken method, except that its declared return
value is Object rather than String.

String nextToken() This method returns the next token from this string
tokenizer.

String nextToken(String delim) This method returns the next token in this string
tokenizer's string.

Ready Reference

 java.io.File class

This class supports a platform-independent definition of file and directory names. It
also provides methods to list the files in a directory, to check the existence,
readability, writeability, type, size, and modification time of files and directories, to
make new directories, to rename files and directories, and to delete files and
directories.

 Constructors:
o public File(String path);
o public File(String path, String name);
o public File(File dir, String name);

Example:

File f1=new File(“/home/java/a.txt”);

 Methods
1. boolean canRead()- Returns True if the file is readable.
2. boolean canWrite()- Returns True if the file is writeable.
3. String getName()- Returns the name of the File with any directory names omitted.
4. boolean exists()- Returns true if file exists
5. String getAbsolutePath()- Returns the complete filename. Otherwise, if the File is

a relative file specification, it returns the relative filename appended to the current
working directory.

6. String getParent()- Returns the directory of the File. If the File is an absolute
specification.

7. String getPath()- Returns the full name of the file, including the directory name.
8. boolean isDirectory()- Returns true if File Object is a directory
9. boolean isFile()- Returns true if File Object is a file

M.C.A-II(Semester-III)Lab Course 305

10. long lastModified()- Returns the modification time of the file (which should be
used for comparison with other file times only, and not interpreted as any
particular time format).

11. long length()- Returns the length of the file.
12. boolean delete()- deletes a file or directory. Returns true after successful deletion

of a file.
13. boolean mkdir ()- Creates a directory.
14. boolean renameTo (File dest)- Renames a file or directory. Returns true after

successful renaming

 Directories :

A directory is a File that contains a list of other files & directories. When you create a
File object & it is a directory, the isDirectory() method will return true. In this case
list method can be used to extract the list of other files & directories inside. The forms
of list() method is-

o public String[] list()
o public String[] list(FilenameFilter filter)

 Streams :

A stream is a sequence of bytes. When writing data to a stream, the stream is called an
output stream. When reading data from a stream, the stream is called an input stream.
If a stream has a buffer in memory, it is a buffered stream. Binary Streams contain
binary data. Character Streams have character data and are used for storing and
retrieving text. The two main types of Streams are ByteStream and CharacterStream.

ByteStream CharacterStream

InputStream OutputStream Reader Writer

There are four top level abstract stream classes: InputStream, OutputStream, Reader,
and Writer.

1. InputStream. -A stream to read binary data.
2. OutputStream-. A stream to write binary data.
3. Reader.- A stream to read characters.
4. Writer. -A stream to write characters.

M.C.A-II(Semester-III)Lab Course 305

 ByteStream Classes

a. InputStream Methods

1. int read ()- Returns an integer representation of next available byte of input.- is
returned at the stream end.

2. int read (byte buffer[])- Read up to buffer.length bytes into buffer & returns
actual number of bytes that are read. At the end returns –1.

3. int read(byte buffer[], int offset, int numbytes)- Attempts to read up to numbytes
bytes into buffer starting at buffer[offset]. Returns actual number of bytes that are
read. At the end returns –1.

4. void close()- to close the input stream
5. void mark(int numbytes)- places a mark at current point in input stream & remain

valid till number of bytes are read.
6. void reset()- Resets pointer to previously set mark/ goes back to stream beginning.
7. long skip(long numbytes)- skips number of bytes.
8. int available()- Returns number of bytes currently available for reading.

b. OutputStream Methods

1. void close() - to close the OutputStream
2. void write (int b) - Writes a single byte to an output stream.
3. void write(byte buffer[]) - Writes a complete array of bytes to an output stream.
4. void write (byte buffer[], int offset, int numbytes) - Writes a sub range of

numbytes bytes from the array buffer, beginning at buffer[offset].
5. void flush() - clears the buffer.

o The following table lists the Byte Stream classes
 BufferedInputStream : Buffered input stream
 BufferedOutputStream : Buffered output stream
 ByteArrayInputStream : Input stream that reads from a byte array
 ByteArrayOutputStream : Output stream that writes to a byte array
 DataInputStream : An input stream that contains methods for reading the Java

standard data types
 DataOutputStream : An output stream that contains methods for writing the

Java standard data types
 FileInputStream : Input stream that reads from a file
 FileOutputStream : Output stream that writes to a file
 FilterInputStream : Implements InputStream
 FilterOutputStream : Implements OutputStream
 InputStream : Abstract class that describes stream input
 OutputStream : Abstract class that describes stream output

M.C.A-II(Semester-III)Lab Course 305

 PipedInputStream : Input pipe
 PipedOutputStream : Output pipe
 PrintStream : Output stream that contains print() and println()
 PushbackInputStream : Input stream that supports one-byte “unget,” which

returns a byte to the input stream
 RandomAccessFile : Supports random access file I/O
 SequenceInputStream : Input stream that is a combination of two or more

input streams that will be read

 CharacterStream Classes

a. Reader:

Reader is an abstract class that defines Java’s method of streaming character input.
All methods in this class will throw an IOException.

Methods in this class-

1. int read ()- Returns an integer representation of next available character
from invoking stream. -1 is returned at the stream end.

2. int read (char buffer[])- Read up to buffer.length chacters to buffer &
returns actual number of characters that are successfully read. At the end
returns –1.

3. int read(char buffer[], int offset, int numchars)- Attempts to read up to
numchars into buffer starting at buffer[offset]. Returns actual number of
characters that are read. At the end returns –1.

4. void close()- to close the input stream
5. void mark(int numchars)- places a mark at current point in input stream &

remain valid till number of characters are read.
6. void reset()- Resets pointer to previously set mark/ goes back to stream

beginning.
7. long skip(long numchars)- skips number of characters.
8. int available()- Returns number of bytes currently available for reading.

b. Writer:

Is an abstract class that defines streaming character output. All the methods in this
class returns a void value & throws an IOException.
The methods are

1. void close() - to close the OutputStream
2. void write (int ch) - Writes a single character to an output stream.
3. void write(char buffer[]) - Writes a complete array of characters to an

output stream.

M.C.A-II(Semester-III)Lab Course 305

4. void write (char buffer[], int offset, int numchars) - Writes a sub range of
numchars from the array buffer, beginning at buffer[offset].

5. void write(String str)- Writes str to output stream.
6. void write(String str, int offset, int numchars)- Writes a subrange of

numchars from string beginning at offset.
7. void flush() - clears the buffer.

c. The following table lists the Character Stream classes

1. BufferedReader : Buffered input character stream
2. BufferedWriter : Buffered output character stream
3. CharArrayReader : Input stream that reads from a character array
4. CharArrayWriter : Output stream that writes to a character array
5. FileReader : Input stream that reads from a file
6. FileWriter : Output stream that writes to a file
7. FilterReader : Filtered reader
8. FilterWriter : Filtered writer
9. InputStreamReader : Input stream that translates bytes to characters
10. LineNumberReader : Input stream that counts lines
11. OutputStreamWriter : Output stream that translates characters to bytes
12. PipedReader : Input pipe
13. PipedWriter : Output pipe
14. PrintWriter : Output stream that contains print() and println()
15. PushbackReader : Input stream that allows characters to be returned to the

input stream

d. Reader:

Abstract class that describes character stream input .

StringReader : Input stream that reads from a string

StringWriter :Output stream that writes to a string

Writer : Abstract class that describes character stream output

e. RandomAccessFile :

Random access files permit nonsequential, or random, access to a file's
contents. To access a file randomly, you open the file, seek a particular
location, and read from or write to that file. When opening a file using a

M.C.A-II(Semester-III)Lab Course 305

RandomAccessFile, you can choose whether to open it read-only or read
write.

RandomAccessFile (File file, String mode) throws FileNotFoundException

RandomAccessFile (String filePath, String mode) throws FileNotFoundException

The value of mode can be one of these:

"r" Open for reading only.

"rw" Open for reading and writing.

Methods:

1. position– Returns the current position
2. position(long)– Sets the position
3. read(ByteBuffer) – Reads bytes into the buffer from the stream
4. write(ByteBffer) – Writes bytes from the buffer to the stream
5. truncate(long) – Truncates the file (or other entity) connected to the stream

Lab Assignments

SET A

1. Write a Java program to perform all string operation given in ready reference using String
class and StringBuffer class.

2. Write a program to accept a string as command line argument and check whether it is a file
or directory. If it is a directory, list the contents of the directory, count how many files the
directory has and delete all files in that directory having extension .txt. (Ask the user if the
files have to be deleted). If it is a file, display all information about the file (path, size,
attributes etc).

3. Write a java program to accept two file names as command line arguments and copy the
contains of first to second in such a manner the case of all alphabet is changed and digits are
replaced by ‘*’. Display appropriate error message if the first file does not exist. (Use
methods from Character class)

4. Write a program to display the contents of a file in the reverse order.

SET B

1. Write a program to store item information (id, name, price, qty) in file “item.dat”. Write a
menu driven program to perform the following operations: i. Search for a specific item by
name. ii. Find costliest item. iii. Display all items and total cost

M.C.A-II(Semester-III)Lab Course 305

2. Write a program to store student information (roll number, name, percentage) in a
RandomAccessFile “student.dat”. Display the details of the student having a specific roll
number.

3. Write a Java program to accept an option, string and file name from user. Perform
following operations:

1. If no option is passed then print all lines in the file containing the string.
2. If the option passed is –c then print the count of lines containing the string.
3. If the option passed is –v then print the lines not containing the string.

SET C

1. Write a menu driven program to perform the following operations on a binary file
“item.dat” which contains id, name, price and quantity.

i. Add an item
ii. Search for an item.
iii. Delete an item
iv. Modify details of an item.
v. Display all items.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 6

GUI using Swing

Reading

You should read the following topics before starting this exercise

1. AWT and Swing concepts.
2. Layout managers in java
3. Containers and Components
4. Adding components to containers

Ready References

Swing Classes:

The following table lists some important Swing classes and their description.

Class Description
Box Container that uses a BoxLayout
JApplet Base class for Swing applets
JButton Selectable component that supports text/image display
JCheckBox Selectable component that displays state to user
JCheckBoxMenuItem Selectable component for a menu; displays state to user
JComboBox For selecting from a drop-down list of choices
JColorChooser For selecting colors

JComponent
JDesktopPane
JDialog
JEditorPane
JFileChooser
JFormattedTextField
JFrame
JInternalFrame
JLabel
JLayeredPane

JList For selecting from a scrollable list of choices
JMenu Selectable component for holding menu items; supports text/image

display
JMenuBar For holding menus
JMenuItem Selectable component that supports text/image display
JOptionPane For creating pop-up messages
JPanel Basic component container
JPasswordField For editing and display of a password

Base class for Swing components
Container for internal frames
Base class for pop-up subwindows
For editing and display of formatted content
For selecting files and directories
For editing and display of a single line of formatted
text
Base class for top-level windows
Base class for top-level internal windows
For displaying text/images
Container that supports overlapping components

M.C.A-II(Semester-III)Lab Course 305

JPopupMenu For holding menu items and popping up over components
JProgressBar For showing the progress of an operation to the user
JRadioButton Selectable component that displays state to user; included in Button

Group toensure that only one button is selected
JRadioButtonMenuItem Selectable component for menus; displays state to user; included in

ButtonGroup to ensure that only one button is selected
JRootPane Inner container used by JFrame, JApplet, and others
JScrollBar For control of a scrollable area
JScrollPane To provide scrolling support to another component
JSeparator For placing a separator line on a menu or toolbar
JSlider For selection from a numeric range of values
JSpinner For selection from a set of values, from a list, a numeric range, or a

date range
JSplitPane Container allowing the user to select the amount of space for each of
two components
JTabbedPane Container allowing for multiple other containers to be displayed; each

container appears on a tab
JTable For display of tabular data
JTextArea For editing and display of single-attributed textual content
JTextField For editing and display of single-attributed textual content on a single

line
JTextPane For editing and display of multi-attributed textual content
JToggleButton Selectable component that supports text/image display; selection

triggers component to stay “in”
JToolBar Draggable container
JToolTip Internally used for displaying tool tips above components
JTree For display of hierarchical data
JViewport Container for holding a component too big for its display area
JWindow Base class for pop-up windows

Layout Manager

The job of a layout manager is to arrange components on a container. A layout manager
is an object of any class that implements the LayoutManager interface.
Each container has a layout manager associated with it. To change the layout manager for
a container, use the setLayout() method.

Syntax
setLayout(LayoutManager obj)

The predefined managers are listed below:
1. FlowLayout 2.BorderLayout 3.GridLayout
4. BoxLayout 5.CardLayout 6.GridBagLayout

Examples:

JPanel p1 = new JPanel()

M.C.A-II(Semester-III)Lab Course 305

p1.setLayout(new FlowLayout());
p1.setLayout(new BorderLayout());
p1.setLayout(new GridLayout(3,4));

Important Containers:

1. JFrame – This is a top-level container which can hold components and containers like
panels.

Constructors

JFrame()
JFrame(String title)

Important Methods

setSize(int width, int height) -Specifies size of the frame in pixels
setLocation(int x, int y) -Specifies upper left corner
setVisible(boolean visible) -Set true to display the frame
setTitle(String title) -Sets the frame title
setDefaultCloseOperation(int
mode) -Specifies the operation when frame is closed. The modes are:

JFrame.EXIT_ON_CLOSE
JFrame.DO_NOTHING_ON_CLOSE
JFrame.HIDE_ON_CLOSE JFrame.DISPOSE_ON_CLOSE

pack() -Sets frame size to minimum size required to hold components

2. JPanel – This is a middle-level container which can hold components and can be added to
other containers like frame and panels.

Constructors

public javax.swing.JPanel(java.awt.LayoutManager, boolean);
public javax.swing.JPanel(java.awt.LayoutManager);
public javax.swing.JPanel(boolean);
public javax.swing.JPanel();

Important Components:

1. Label
With the JLabel class, you can display unselectable text and images.

Constructors-

JLabel(Icon i) JLabel(Icon I , int n)

M.C.A-II(Semester-III)Lab Course 305

JLabel(String s) JLabel(String s, Icon i, int n)
JLabel(String s, int n) JLabel()

The int argument specifies the horizontal alignment of the label's contents within
its drawing area; defined in the SwingConstants interface (which JLabel implements):
LEFT (default), CENTER, RIGHT, LEADING, or TRAILING.

Methods

1. Set or get the text displayed by the label.
void setText(String) String getText()

2. Set or get the image displayed by the label.
void setIcon (Icon) Icon getIcon()

3. Set or get the image displayed by the label when it's disabled. If you don't specify a
disabled image, then the look-and-feel creates one by manipulating the default image.
void setDisabledIcon(Icon) Icon getDisabledIcon()

4. Set or get where in the label its contents should be placed. For vertical alignment:
TOP, CENTER (the default), and BOTTOM.
void setHorizontalAlignment(int) void setVerticalAlignment(int)
int getHorizontalAlignment() int getVerticalAlignment()

2. Button

A Swing button can display both text and an image. The underlined letter in each
button's text shows the mnemonic which is the keyboard alternative.

Constructors-
JButton(Icon I)
JButton(String s)
JButton(String s, Icon I)
Methods
void setDisabledIcon(Icon) void setPressedIcon(Icon)
void setSelectedIcon(Icon) void setRolloverIcon(Icon)
String getText() void setText(String)
Event- ActionEvent

3. Check box

Class- JCheckBox

Constructors-
JCheckBox(Icon i) JCheckBox(Icon i,boolean state)
JCheckBox(String s) JCheckBox(String s, boolean state)

M.C.A-II(Semester-III)Lab Course 305

JCheckBox(String s, Icon i) JCheckBox(String s, Icon I, boolean state)

Methods

void setSelected(boolean state) String getText()
void setText(String s)

Event- ItemEvent

4. Radio Button

Class- JRadioButton
Constructors

JRadioButton (String s) JRadioButton(String s, boolean state)
JRadioButton(Icon i) JRadioButton(Icon i, boolean state)
JRadioButton(String s, Icon i) -JRadioButton(String s, Icon i, boolean state)
JRadioButton() ”

To create a button group- ButtonGroup()

Adds a button to the group, or removes a button from the group.
void add(AbstractButton) void remove(AbstractButton)

5. Combo Box

Class- JComboBox

Constructors- JComboBox()

Methods
void addItem(Object) Object getItemAt(int)
Object getSelectedItem() int getItemCount()

Event- ItemEvent

6. List

Constructor- JList(ListModel)

List models-

1. SINGLE_SELECTION - Only one item can be selected at a time. When the user
selects an item, any previously selected item is deselected first.

2. SINGLE_INTERVAL_SELECTION- Multiple, contiguous items can be selected.
When the user begins a new selection range, any previously selected items are

M.C.A-II(Semester-III)Lab Course 305

deselected first.
3. MULTIPLE_INTERVAL_SELECTION- The default. Any combination of items

can be selected. The user must explicitly deselect items.

Methods
boolean isSelectedIndex(int) void setSelectedIndex(int)
void setSelectedIndices(int[]) void setSelectedValue(Object, boolean)
void setSelectedInterval(int, int) int getSelectedIndex()
int getMinSelectionIndex() int getMaxSelectionIndex()
int[] getSelectedIndices() Object getSelectedValue()
Object[] getSelectedValues()

Event- ActionEvent

7. Text classes
All text related classes are inherited from JTextComponent class

a. JTextField
Creates a text field. The int argument specifies the desired width in columns. The
String argument contains the field's initial text. The Document argument provides a
custom document for the field.

Constructor

JTextField() JTextField(String)
JTextField(String, int) JTextField(int)
JTextField(Document, String, int)

b. JPasswordField

Creates a password field. When present, the int argument specifies the desired
width in columns. The String argument contains the field's initial text. The Document
argument provides a custom document for the field.

Constructors-

JPasswordField() JPasswordField(String)
JPasswordField(String, int) JPasswordField(int)
JPasswordField(Document, String, int)

Methods

1. Set or get the text displayed by the text field.
void setText(String) String getText()

2. Set or get the text displayed by the text field.
char[] getPassword()

3. Set or get whether the user can edit the text in the text field.
void setEditable(boolean) boolean isEditable()

M.C.A-II(Semester-III)Lab Course 305

4. Set or get the number of columns displayed by the text field. This is really just a hint
for computing the field's preferred width.
void setColumns(int); int getColumns()

5. Get the width of the text field's columns. This value is established implicitly by the
font.
int getColumnWidth()

6. Set or get the echo character i.e. the character displayed instead of the actual
characters typed by the user.
void setEchoChar(char) char getEchoChar()

Event- ActionEvent

c. JTextArea
Represents a text area which can hold multiple lines of text

Constructors-

JTextArea (int row, int cols)
JTextArea (String s, int row, int cols)

Methods

void setColumns (int cols) void setRows (int rows)
void append(String s) void setLineWrap (boolean)

8. Dialog Boxes

Types

1. Modal- wont let the user interact with the remaining windows of
application until first deals with it. Ex- when user wants to read a file, user
must specify file name before prg. can begin read operation.

2. Modeless dialog box- Lets the user enters information in both, the dialog
box & remainder of application ex- toolbar.
Swing has a JOptionPane class, that lets you put a simple dialog box.

Methods in JOption Class

1. static void showMessageDialog()- Shows a message with ok button.
2. static int showConfirmDialog()- shows a message & gets users options

from set of options.

3. static int showOptionDialog- shows a message & get users options from
set of options.

4. String showInputDialog()- shows a message with one line of user input.

M.C.A-II(Semester-III)Lab Course 305

9. Menu

Creating and Setting Up Menu Bars

Constructor or Method Purpose
JMenuBar() -Creates a menu bar.
JMenu add(JMenu) -Creates a menu bar.
void setJMenuBar(JMenuBar) - Sets or gets the menu bar of an applet, dialog,

frame, internal frame, or root pane.
JMenuBar getJMenuBar()

Creating and Populating Menus

JMenu() -Creates a menu. The string specifies the text to
display for the menu.

JMenu(String) -

JMenuItem add(JMenuItem) - Adds a menu item to the current end of the
menu. If the argument is an Action object, then
the menu creates a menu item. If the argument is
a string, then the menu automatically creates a
JMenuItem object that displays the specified
text.

JMenuItem add(Action) -
JMenuItem add(String) -

void addSeparator() Adds a separator to the current end of the menu.

JMenuItem insert(Action, int) - Inserts a menu item or separator into the menu
at the specified position. The first menu item is
at position 0, the second at position 1, and so on.
The JMenuItem, Action, and String arguments
are treated the same as in the corresponding add
methods.

void insert(String, int) ”
void insertSeparator(int) ”
JMenuItem insert(JMenuItem, int) ”

void remove(JMenuItem) -Removes the specified item(s) from the menu.
If the

argument is an integer, then it specifies the
position of the menu item to be removed.

M.C.A-II(Semester-III)Lab Course 305

void remove(int) ”
void removeAll() ”

Implementing Menu Items

JMenuItem() -Creates an ordinary menu item. The icon
argument, if present, specifies the icon that the
menu item should display. Similarly, the string
argument specifies the text that the menu item
should display. The integer argument specifies
the keyboard mnemonic to use. You can specify
any of the relevant VK constants defined in the
KeyEvent class. For example, to specify the A
key,
use KeyEvent.VK_A.

JMenuItem(String) ”
JMenuItem(Icon) ”
JMenuItem(String, Icon) ”
JMenuItem(String, int) ”
JCheckBoxMenuItem() -Creates a menu item that looks and acts like a

check box. The string argument, if any, specifies
the text that the menu item should display. If
you specify true for the boolean argument, then
the menu item is initially selected (checked).
Otherwise

JCheckBoxMenuItem(String) ”
JCheckBoxMenuItem(Icon) ”
JCheckBoxMenuItem(String, Icon) ”
JCheckBoxMenuItem(String, boolean) ”
JCheckBoxMenuItem(String, Icon, ”
boolean)
JRadioButtonMenuItem() -Creates a menu item that looks and acts like a

radio button. The string argument, if any,
specifies the text that the menu item should
display. If you specify true for the boolean
argument, then the menu item is initially
selected. Otherwise, the menu item is initially
unselected.

JRadioButtonMenuItem(String) ”
JRadioButtonMenuItem(Icon) ”
JRadioButtonMenuItem(String, Icon) ”
JRadioButtonMenuItem(String, boolean) ”

M.C.A-II(Semester-III)Lab Course 305

JRadioButtonMenuItem(Icon, boolean) ”
JRadioButtonMenuItem(String, Icon, ”
boolean)
void setState(boolean) - Set or get the selection state of a check box

menu item.
boolean getState() ”
void setEnabled(boolean) -If the argument is true, enable the menu item.

Otherwise, disable the menu item.

GUI Using Swing

Lab Assignments

SET A

1. Write a java program to create the following GUI screen using appropriate layout
managers.

2. Write a java program to create the following GUI screen using appropriate layout
managers.

3. Write a java program to create the following GUI screen using appropriate layout
managers.

M.C.A-II(Semester-III)Lab Course 305

SET B

1. Write a program to display the following menus and sub-menus.

2. Write a program to create the following GUI.

SET C

1. Write a program to create the following GUI.

M.C.A-II(Semester-III)Lab Course 305

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 7

Event Handling

Reading

You should read the following topics before starting this exercise
1. Delegation event model
2. Event sources, Event listeners, Event classes, Adapter classes.
3. Anonymous class.

Ready Reference

Java has two types of events:
1. Low-Level Events: Low-level events represent direct communication from user. A
low level event is a key press or a key release, a mouse click, drag, move or release,
and so on. Following are low level events.

Event Description
ComponentEvent Indicates that a component object (e.g. Button,

List, TextField) is moved, resized, rendered
invisible or made visible again.

FocusEvent Indicates that a component has gained or lost the
input focus.

KeyEvent Generated by a component object (such as
TextField) when a key is pressed,released or
typed.

MouseEvent Indicates that a mouse action occurred in a
component. E.g. mouse is pressed,releases,
clicked (pressed and released), moved or
dragged.

ContainerEvent Indicates that a container’s contents are
changed because a component was added or
removed.

WindowEvent Indicates that a window has changed its status.
This low level event is generated by a Window
object when it is opened, closed, activated,
deactivated, iconified, deiconified or when focus
is transferred into or out of the Window.

2. High-Level Events: High-level (also called as semantic events) events encapsulate the
meaning of a user interface component. These include following events.

Event Description
ActionEvent Indicates that a component-defined action occurred.

This high-level event is generated by a component (such
as Button) when the component-specific action occurs
(such as being pressed).

M.C.A-II(Semester-III)Lab Course 305

AdjustmentEvent The adjustment event is emitted by Adjustable objects
like scrollbars.

ItemEvent Indicates that an item was selected or deselected. This
high-level event is generated by an ItemSelectable
object (such as a List) when an item is selected or
deselected by the user.

TextEvent Indicates that an object’s text changed. This high-level
event is generated by an object (such as
TextComponent) when its text changes.

The following table lists the events, their corresponding listeners and the method to add
the listener to the component.

Event Event Source Event Listener Method to add listener to
event source

Low-level Events

ComponentEvent Component ComponentListener addComponentListener()

FocusEvent Component FocusListener addFocusListener()

KeyEvent Component KeyListener addKeyListener()

MouseEvent Component MouseListener
MouseMotionListener

addMouseListener()

addMouseMotionListener()

ContainerEvent

WindowEvent

Container

Window

ContainerListener

WindowListener

addContainerListener()

addWindowListener()

High-level Events

ActionEvent Button

List

MenuItem

TextField

ActionListener addActionListener()

AdjustmentEvent Scrollbar AdjustmentListener addAdjustmentListener()

M.C.A-II(Semester-III)Lab Course 305

TextEvent
TextField

TextArea TextListener addTextLIstener()

Listener Methods:

Methods Description

ComponentListener

componentResized(ComponentEvent
e)

Invoked when component’s size changes.

componentMoved(ComponentEvent e) Invoked when component’s position changes.

componentShown(ComponentEvent e) Invoked when component has been made visible.

componentHidden(ComponentEvent
e)

Invoked when component has been made invisible.

FocusListener

focusGained(FocusEvent e) Invoked when component gains the keyboard focus.

focusLost(FocusEvent e) Invoked when component loses the keyboard focus.

KeyListener

keyTyped(KeyEvent e)

.

Invoked when a key is typed.

keyPressed(KeyEvent e) Invoked when a key is pressed.

keyReleased(KeyEvent e) Invoked when a key is released

MouseListener

mouseClicked(MouseEvent e) Invoked when a mouse button is clicked (i.e.

M.C.A-II(Semester-III)Lab Course 305

. pressed and

released) on a component.

mousePressed(MouseEvent e) Invoked when a mouse button is pressed on a
component.

mouseReleased(MouseEvent e) Invoked when a mouse button is released on a
component.

mouseEntered(MouseEvent e) Invoked when a mouse enters a component

mouseExited(MouseEvent e) Invoked when a mouse exits a component.

MouseMotionListener

mouseDragged(MouseEvent e) Invoked when a mouse button is pressed on a
component and then dragged.

mouseMoved(MouseEvent e) Invoked when a the mouse cursor is moved on to a
component but mouse button is not pressed.

ContainerListener

componentAdded(ContainerEvent e) Invoked when a component is added to the
container.

componentRemoved(ContainerEvent
e)

Invoked when a component is removed from the
container.

WindowListener

windowOpened(WindowEvent e) Invoked the first time a window is made visible

windowClosing(WindowEvent e) Invoked when the user attempts to close the
window from the window’s system menu.

windowClosed(WindowEvent e) Invoked when a window has been closed as the

M.C.A-II(Semester-III)Lab Course 305

result of calling dispose on the window.

windowIconified(WindowEvent e) Invoked when a window is changed from a normal
to a

minimized state.

windowDeiconified(WindowEvent e) Invoked when a window is changed from
minimized to normal state.

windowActivated(WindowEvent e) Invoked when the window is set to be the active
window.

windowDeactivated(WindowEvent e) Invoked when the window is no longer the active
window.

ActionListener

actionPerformed(ActionEvent e) Invoked when an action occurs.

ComponentListsner

mouseExited(MouseEvent e) Invoked when a mouse exits a component.

MouseMotionListener

mouseDragged(MouseEvent e) Invoked when a mouse button is pressed on a
component and then dragged.

mouseMoved(MouseEvent e) Invoked when a the mouse cursor is moved on to a
component but mouse button is not pressed.

ContainerListener

componentAdded(ContainerEvent e) Invoked when a component is added to the
container.

componentRemoved(ContainerEvent
e)

Invoked when a component is removed from the
container.

M.C.A-II(Semester-III)Lab Course 305

WindowListener

windowOpened(WindowEvent e) Invoked the first time a window is made visible

windowClosing(WindowEvent e) Invoked when the user attempts to close the
window from the window’s system menu.

windowClosed(WindowEvent e) Invoked when a window has been closed as the
result of calling dispose on the window.

windowIconified(WindowEvent e) Invoked when a window is changed from a normal
to a

minimized state.

windowDeiconified(WindowEvent e) Invoked when a window is changed from
minimized to normal state.

windowActivated(WindowEvent e) Invoked when the window is set to be the active
window.

windowDeactivated(WindowEvent e) Invoked when the window is no longer the active
window.

ActionListener

actionPerformed(ActionEvent e) Invoked when an action occurs.

ComponentListsner

ComponentListsner

itemStateChanged(ActionEvent e) Invoked when an item has been selected or
deselected by the user.

M.C.A-II(Semester-III)Lab Course 305

AdjustmentListener

adjustmentValueChanged(ActionEvent
e)

Invoked when the value of the adjustable has
changed.

TextListener

textValueChanged(ActionEvent e) Invoked when the value of the text has changed.

Adapter Classes:

The Adapter classes provided by AWT are as follows:
java.awt.event.ComponenentAdapter java.awt.event.ContainerAdapter
java.awt.event.FocusAdapter java.awt.event.KeyAdapter
java.awt.event.MouseAdapter java.awt.event.MouseMotionAdapter
java.awt.event.WindowAdapter

Event Handling
Lab Assignments

SET A

1. Write a java program to validate user login and password. If they do not match,
display appropriate message in a dialog box. The user is allowed maximum 3 chances.

2. Write a java program to accept a number in a text box. Accept the choice of the user
(Palindrome/prime/Armstrong) using radio buttons and .After clicking OK button
Display message in the textbox(Display Message) if number correspond to the option
or not.

M.C.A-II(Semester-III)Lab Course 305

3. Write a java program to accept user name in a text box. Accept the class of the user
(MCA-I/MCA-II/MCA-III) using radio buttons and the hobbies of the user using
check boxes. Display the selected options in a text box.

SET B

1. Write a program to create two lists and transfer elements from one list to another.
Multiple selection is allowed. The Add button allows an element to be added and the
Remove button allows an element to be removed (Accepted in an input dialog). Do
not add duplicate elements.

2. Write Java program to design three text boxes and two buttons using swing . Enter
different strings in first and second textbox. On clicking the First command button,
concatenation of two strings should be displayed in third text box and on clicking
second command button , reverse of string should display in third text box.

SET C

1. Write a Java program to design a screen using Swing that will create four text fields.
First for the text, second for what to find and third for replace. Display result in the
fourth text field. Also display the count of total no. of replacements made. The
button clear to clear the text boxes.

M.C.A-II(Semester-III)Lab Course 305

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 8

Applet

Reading

You should read the following topics before starting this exercise
1. Concept of Applet
2. Difference between application and applet.
3. The Applet class
4. Applet lifecycle
5. Passing parameters to applets
6. The APPLET tag
7. Running an applet using browser and appletviewer

Ready Reference

Creating an applet

All applets are subclasses of the java.applet.Applet class. You can also create an
applet by extending the javax.swing.JApplet class. The syntax is:
class MyApplet extends Applet
{
//applet methods
}

Applet methods:

Method Purpose
init() -Automatically called to perform initialization of the

applet. Executed only once.
start() -Called every time the applet moves into sight on the

Web browser to allow the applet to start up its normal
operations.

stop() - Called every time the applet moves out of sight on the
Web browser to allow the applet to shut off expensive
operations.

destroy() - Called when the applet is being unloaded from the
page to perform final release of resources when the
applet is no longer used.

paint() - Called each time the applets output needs to be
redrawn.

Running an applet

1. Compile the applet code using javac
2. Use the java tool – appletviewer to view the applet (embed the APPLET tag in
comments in the code)

M.C.A-II(Semester-III)Lab Course 305

3. Use the APPLET tag in an HTML page and load the applet in a browser

Using appletviewer:

1. Write the HTML APPLET tag in comments in the source file.
2. Compile the applet source code using javac.
3. Use appletviewer ClassName.class to view the applet.

Using browser:

1. Create an HTML file containing the APPLET tag.
2. Compile the applet source code using javac.
3. In the web browser, open the HTML file.

The APPLET tag
< APPLET
[CODEBASE = appletURL]
CODE = appletClassFile
[ALT = alternateText]
[ARCHIVE = archiveFile]
[NAME = appletInstanceName]
WIDTH = pixels
HEIGHT = pixels
[ALIGN = alignment]
[VSPACE = pixels]
[HSPACE = pixels]
>
[< PARAM NAME = AttributeName VALUE = AttributeValue />]
</APPLET>

Lab Assignments
SET A

1. Create an applet to display a message at the left upper most corner of the applet. The
message is passed as a parameter to the applet.
2. Create an applet to accept a number in a textbox and on click of OK button, it displays if
given number is even or odd.

3. Create a conversion applet which accepts currency of other country in one unit and
converts it to Indian currency. The input unit is selected from a list.

Input Output

Currency

M.C.A-II(Semester-III)Lab Course 305

SET B

1. Create a Stickman in a applet.

2. Create an Applet which displays a message in the center of the screen. The message
indicates the events taking place on the applet window. Handle events like mouse click,
mouse moved, mouse dragged, mouse pressed, and key pressed. The message should
update each time an event occurs. The message should give details of the event such as
which mouse button was pressed, which key is pressed etc. (Hint: Use repaint(),
KeyListener, MouseListener, MouseEvent method getButton, KeyEvent methods
getKeyChar)

SET C

1.Create a calculator in an applet.

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

M.C.A-II(Semester-III)Lab Course 305

SESSION 9

Multithreading

Reading

You should read the following topics before starting this exercise:

1. Thread class
2. Runnable interface
3. Thread lifecycle
4. Thread methods

Ready Reference

Important methods of the Thread class:

Method Description

static int activeCount() -Returns the number of active threads in the current
thread's thread group.

static Thread currentThread() -Returns a reference to the currently executing thread
object

String getName() -Returns this thread's name.
int getPriority() -Returns this thread's priority.
ThreadGroup getThreadGroup() -Returns the thread group to which this thread belongs.
void interrupt() -Interrupts this thread.
boolean isAlive() -Tests if this thread is alive.
boolean isDaemon() -Tests if this thread is a daemon thread.
boolean isInterrupted() -Tests whether this thread has been interrupted.
void join() -Waits for this thread to end.
boolean isAlive() -Tests if this thread is alive.
boolean isDaemon() - Tests if this thread is a daemon thread.
boolean isInterrupted() -Tests whether this thread has been interrupted.
void join() -Waits for this thread to end.
void setName(String name) - Changes the name of this thread.
void setPriority(int newPriority) -Changes the priority of this thread.
void sleep(long mSec) -Causes the currently executing thread to sleep.
void start() -Causes this thread to begin execution.
String toString() -Returns a string representation of this thread, including

the thread's name, priority, and thread group.
static void yield() - Causes the currently executing thread object to

temporarily pause and allow other threads to execute.
void setName(String name) -Changes the name of this thread.
void setPriority(int newPriority) -Changes the priority of this thread.
void sleep(long mSec) -Causes the currently executing thread to sleep.
void start() -Causes this thread to begin execution.

M.C.A-II(Semester-III)Lab Course 305

String toString() - Returns a string representation of this thread,
including the thread's name, priority, and thread
group.

static void yield() - Causes the currently executing thread object to
temporarily pause and allow other threads to
execute.

Lab Assignments

SET A

1. Write a JAVA program to accept the number from the user and do the following
- Calculate Factorial of a given Number.
- To check whether given number is prime or not.
(use Thread)

2. Write a JAVA program which will create two child threads by implementing Runnable
interface; one thread will print even nos from 1 to 50 and other display vowels.

3.Define a thread called “PrintText_Thread” for printing text on command prompt for
n number of times. Create three threads and run them. Pass the text and n as parameters to

the thread constructor. Example:
i. First thread prints “I am in MCA-I” 10 times
ii. Second thread prints “I am in MCAII” 20 times
iii. Third thread prints “I am in MCA-III” 30 times

SET B

1. Write a JAVA program Design a screen with two buttons start thread and stop thread.
Clicking on start ,it should start printing “Thread running” until stop button is pressed.

2. Write a JAVA program to design a screen with two textboxes and start button.
Clicking on start should start two threads printing 1 to 100 in two textboxes.

3. Write a java program to create a class called FileWatcher that can be given several
filenames that may or may not exist. The class should start a thread for each file name.
Each thread will periodically check for the existence of its file. If the file exists, the thread
will write a message to the console and then end.

SET C

1. Define a thread which moves the text “JAVA” in a panel as per the direction of
Button clicked (Left, Right).

2. Write a program to show how three thread manipulate same stack , two of them are
pushing elements on the stack, while the third one is popping elements off the stack.

M.C.A-II(Semester-III)Lab Course 305

Assignment Evaluation
0:Not Done [] 1:Incomplete [] 2.Late Complete []

3:Needs Improvement [] 4:Complete [] 5:WellDone []

Signature of the Instructor Date of Completion

